Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
25th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2021 ; : 125-126, 2021.
Article in English | Scopus | ID: covidwho-2012421

ABSTRACT

The need to develop high-throughput diagnostic platforms for infectious diseases has never been more evident than with the emergence of SARS-CoV-2 and the ensued COVID-19 pandemic. Microfluidics, in tandem with its multiplexing capabilities, high sensitivity, and potential for automation, provides a unique advantage towards the development of high-throughput serological diagnostic platforms. Here, we present a microfluidic device that detects IgG or IgM raised against four SARS-CoV-2 antigens (spike, S;S1 subunit, S1;the receptor-binding domain, RBD;and nucleocapsid, N) from 50 serum samples in parallel. We validated the platform with a cross-sectional cohort of 66 samples from confirmed COVID-19 patients and a pre-pandemic control of 34 serum samples collected in 2018. The analysis of both antibodies against all four viral antigens provided a sensitivity of 90.4% and a specificity of 94.1%, with both parameters increasing to 100% in late-stage samples (21-30 days after symptoms onset). We expect our device to open the door to massive serological testing, impacting diagnostics, vaccine development, and epidemiological understanding of COVID-19. © 2021 MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. All rights reserved.

2.
ACS Nano ; 15(11): 18023-18036, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1493017

ABSTRACT

Cytokine storm, known as an exaggerated hyperactive immune response characterized by elevated release of cytokines, has been described as a feature associated with life-threatening complications in COVID-19 patients. A critical evaluation of a cytokine storm and its mechanistic linkage to COVID-19 requires innovative immunoassay technology capable of rapid, sensitive, selective detection of multiple cytokines across a wide dynamic range at high-throughput. In this study, we report a machine-learning-assisted microfluidic nanoplasmonic digital immunoassay to meet the rising demand for cytokine storm monitoring in COVID-19 patients. Specifically, the assay was carried out using a facile one-step sandwich immunoassay format with three notable features: (i) a microfluidic microarray patterning technique for high-throughput, multiantibody-arrayed biosensing chip fabrication; (ii) an ultrasensitive nanoplasmonic digital imaging technology utilizing 100 nm silver nanocubes (AgNCs) for signal transduction; (iii) a rapid and accurate machine-learning-based image processing method for digital signal analysis. The developed immunoassay allows simultaneous detection of six cytokines in a single run with wide working ranges of 1-10,000 pg mL-1 and ultralow detection limits down to 0.46-1.36 pg mL-1 using a minimum of 3 µL serum samples. The whole chip can afford a 6-plex assay of 8 different samples with 6 repeats in each sample for a total of 288 sensing spots in less than 100 min. The image processing method enhanced by convolutional neural network (CNN) dramatically shortens the processing time ∼6,000 fold with a much simpler procedure while maintaining high statistical accuracy compared to the conventional manual counting approach. The immunoassay was validated by the gold-standard enzyme-linked immunosorbent assay (ELISA) and utilized for serum cytokine profiling of COVID-19 positive patients. Our results demonstrate the nanoplasmonic digital immunoassay as a promising practical tool for comprehensive characterization of cytokine storm in patients that holds great promise as an intelligent immunoassay for next generation immune monitoring.


Subject(s)
COVID-19 , Microfluidics , Humans , Cytokine Release Syndrome/diagnosis , COVID-19/diagnosis , Immunoassay/methods , Cytokines/analysis , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL